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A b s t r a c t  

We describe a bigraded generalization of the Weil algebra, of its basis and of the characteristic 
homomorphism which besides ordinary characteristic classes also maps on cohomology classes 
leading to Donaldson invariants in the appropriate context. Furthermore these cohomology classes 
exhaust the image of the generalized characteristic homomorphisms. 
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I n t r o d u c t i o n  

In [2], a small differential algebra was introduced in connection with gauge fixing h la 

B.R.S. [3] in Witten 's  topological quantum field theory [13]. Furthermore, in the last part 

of  [2, Section 5] this algebra was identified with a differential subalgebra of  the algebra of  

differential forms on the product P x C of  a principal bundle P over a manifold M with the 

space C of  principal connections of  P .  By a slight "abstraction" one can produce an algebra 

9,[ which is a free bigraded-commutative differential algebra which admits the above quoted 
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differential algebra (of [2]) as homomorphic image. This algebra, which is described in 

Section 1 of the present paper, is obviously a bigraded version of the Well algebra [ 12] (see 

also in [5,9]); it is a contractible algebra. Therefore the various cohomologies of ~t as well 
as the ones of its images are trivial. It was claimed in [ 11 ] that the relevant cohomologies 
were the basic cohomologies for operations in the sense of Cartan [5,9]. Actually this is 

also implicit in [2, Section 5] since there, it is claimed that the relevant cohomology is the 
de Rham cohomology of M x C / ~  (and not the one of P x C) where G is the group of gauge 
transformations of P. It is the aim of this paper to show that, by using ?~ as generalization 

of the Well algebra, one can generalize the Well homomorphism in such a way that besides 

the usual characteristic classes, it makes contact with the Donaldson invariants [6]. That 

there is connection between the usual characteristic classes and the Donaldson invariant 
is natural in view of the apparencies of the Donaldson-Witten cocycles [13] which are 

bigraded expansions of the Chern-Weil cocycles. Our results imply that the classes of these 
bigraded expansions of Chem-Weil cocycles (i.e. the Donaldson-Witten cocycles) exhaust 

the image of the generalized characteristic homomorphism. In terms of fields this means that 
the (local) relevant basic BRS-cohomology of the bigraded differential algebra generated by 

the ghosts, the gauge potentials and their BRS and exterior differentials is exhausted by the 
above classes. It is expected that, as for the case of ordinary gauge theory [8], inclusion of 

arbitrary derivations of the fields does not modify essentially this result. It is worth noticing 
here that ?l is a generalization of the Well algebra based on the finite dimensional Lie algebra 

of the structure group of P and it is not the one based on the infinite dimensional Lie algebra 
of the group of gauge transformations of P [10]; in particular, Pl is finitely generated. 

The plan of the paper is the following. In Section 1 we describe the bigraded general- 

ization of the Well algebra and its basis and we compute its various basic cohomologies. 
In Section 2 we describe the corresponding appropriate generalization of the characteristic 

homomorphism. One can remark that the independence of the metric in [2] follows from 
the more general fact proved here that the characteristic homomorphism does not depend 
on the chosen connection of the space of connection over P (the structure group being there 

the gauge group). For a review on topological quantum field theory as well as for detailed 

references on the subject we refer to the Physics Report [4]. We apologize on the fact that 
we denote by a or more precisely by a_ what is almost everywhere in the literature denoted 

by c, e.g. [2,4]. 

1. A universal model---generalization of the Weil algebra 

1.1. Description o / t h e  model  

Let ,q be a finite dimensional Lie algebra and let (El)  be a basis of ,q. Consider eight 

c o p i e s  .qA,~F,(~ct,.q~o,~p,~,.q B *  * * * * * * and ~¢~* of the dual ~q* of ~ with dual basis respectively 

denoted by (Ai) ,  (Fi) ,  (oti), (tpi), (~ri), (~i), (B i) and (/3i). Let P~(fi) (or simply ~) be the 

free graded commutative algebra generated by the A i and oti in degree one, the F i , ~o i , 

~pi and ~i in degree two and the B i and/~i in degree three. On the space ,q ® ~1, there 
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is a natural bracket [ . ,o]  defined by [X ® P ,Y ® Q] = [X,Y] ® P • Q for X, Y ~ .q 

and P, Q ~ 91. For any linear mapping R of 92 in itself one defines a linear mapping, 
again denoted by R, of g ® 9 1  in itself by R ( X ®  P )  = X ®  R ( P )  for X c g and 

P E 91. Let us introduce the following elements of g ® 9/ associated to the generators 
of 91: A = E i ® A i, F = Ei ® F i, ot : Ei ® Ol i, ~ = Ei ® ~0 i , ~r : Ei ® 1~ i , 

: Ei ® ~i,  B = Ei ® B i and fl = Ei ® i~ i. With the above notations, one has the 

following lemma. 

L e m m a  1.1. There are unique ant iderivat ions d and 8 o f  9.l satisfying d 2 = 0, 
6 2 = 0 and d6 + 8d = 0 such that F = d A  + l [A ,A] ,~o  = 6ot + l [ a , a ] , ~  = 

8A + dot + [A, ot],~ = 8A, B = 8F + [or, F] a n d f l  = d~o + [A, tp]. 

P r o o f  By a change of generators, 91 is the free graded commutative algebra generated by 
the A i , O1 i in degree one, d A  i , 6A i , dot i , 8ct i in degree two and 8dA  i , d6ct i in degree three. 

The lemma is thus obvious and 91 is contractible for d and for 6. [] 

One defines an underlying bigraduation on 91 by giving to the A i the bidegree (1,0), to the 

F i the bidegree (2, 0), to the ffi the bidegree (0, 1), to the q9 i the bidegree (0, 2), to the ~i and 

the ~i the bidegree (1, 1), to the B i the bidegree (2, 1) and to the fig the bidegree (1, 2). 91 is 

then a bigraded differential algebra with total differential d + 8, d being the part of bidegree 
(1, 0) and 8 the part of bidegree (0, 1). Since 91 is contractible for each of these differentiak, 
its cohomologies are trivial (Hk'l(92,d) = 0 if k + l > 0, H°'°(91,d) ----- C, etc.). The 

interest of this bigraded differential algebra lies in the following universal property which 
is closely related to the triviality of its cohomology. 

Lemma  1.2. Let  $2 be a bigraded commutat ive  differential algebra with differential d + 8, 

d o fb idegree  (1, 0) and 6 o fb idegree  (0, 1). Let A ---- Ei ® A i be an e lement  o f g  ® $21,0 

and a_q_ = Ei ® Ct i be an e lement  o f  g ® $2 0, 1. Then there is a unique homomorph i sm o f  

b igraded dif ferential  algebras h : 91 ---> $2 such that h ( A  i ) ~- A i and h (a i) = ot i , (in short  

h ( A )  = A,  h(ot) = or). 

Notice that 91 contains two Weil algebras namely Wd (g) = (Ag~ ® Sg~, d) and W8 (~) = 
S *  (Ag* ® g~, 8). The first one, Wd(g) ,  will play in the sequel the role of the Weil algebra 

(see Section 2); its base (i.e. basic subalgebra) consists of the Z ( F )  where 2" runs over all 
ad*(g)-invariant elements of Sg* (i.e. invariant polynomials on g). Let ~(g) (or simply ~)  
be the set of elements of 91 of the form 2"(F, ~p, ~o, B,  fl) where 2" runs over all ad*(fl)- 
invariant elements of Sg* ® Sg* ® Sg* ® Ag* ® Ag* (invariant "polynomials" in F, ~p, ~0, B 
and fl). ~3 is a bigraded subalgebra of 9.1 which is easily shown to be stable by d and by 6. 
For reasons which will become clear in Section 2, the bigraded differential algebra ~3 will 
be called the base o f  91. 

The elements of ~3 are in fact basic for two operations of g in 91 which we now describe. 
One defines first an operation of g in 91, X ~ i x ,  which extends the usual operation of g 
in the Weil algebra Wd(.q) by setting, for X ~ ~, i x ( A )  = X and ix(other generators) = 0 
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which implies ix3 + 3 i x  = 0 and, with L x  = i x d  + d i x ,  L x  (Z) = [Z, X] for all generators 

Z = A, F,  c¢, ~p, 7t, ~, B,/3. By interchanging the bidegrees, one defines similarly another 

• r which extends the one of W~(a). Namely one sets, for operation of .q in ~1, X ~ t x ,  

X ~ .q, i'x(el ) : X,  f x ( A )  : i 'x(F) = i'x(~O) = i~xOp) : i 'x(B) = i~(/3) = 0 and 
, t  i'x(deO : 0 (notice that then i~x(3A) = i~(~) # 0); this implies i'xd + dl X ---- 0 and, 

with L~ = i~¢3 + 3i~¢, L~ (Z) = [Z, X] for all generators Z = A, F,  a ,  ~p, ~ ,  ~, B,/3. Let 

~ '  be the common base for these two operations, i.e. remembering that Lx -= L~, ,2t' is 

defined by 

~ '  = {a ~ ~ l ix (a)  = O,i~(a) = 0 and L x ( a )  : 0, VX ~ .q}. 

One has ~ C ~ '  and ~ = ~ '  whenever the Lie algebra .q is semi-simple. However, 

when .q is not semi-simple, and in particular when .q contains an abelian factor, the inclusion 

C ~ '  is a strict one. 3 It is clear that ~ '  is the natural base for Pl considered as a bigraded 

version of  the Weil algebra, nevertheless, what we call base in this paper is the bigraded 

differential subalgebra ~.  In fact, in Section 2, only the first operation will be mapped 

homomorphically on a similar operation of  .q. Nevertheless '2~ will be mapped into a basis 

of  two operations. 

In contrast to the case of  ~[, the various cohomologies of  ~ are non-trivial and it is the 

aim of  Sections 1.2 and 1.3 to compute these cohomoiogies. 

1.2. The d and the S cohomologies of~(,q) 

Let dl, d2, 31 and 32 be the unique antiderivations of ~1[ satisfying 

dl lp = - B ,  dl ¢p = /3 ,  dl (other generators) = 0; 

dzB = - [ F ,  7t], d2/3 = [F,  q ) ] ,  dz(other generators) = 0; 

31F = B, 31 ~O = -/3,  31 (other generators) = 0: 

32B = [q), F],  32/3 = -[~p, lp], 32(other generators) = 0. 

is stable by dl, d2, 31 and 82 and one has the following lemma. 

L e m m a  1.3. The restriction o f  d to ~a coincides with the restriction of  dl + d2 and the 

restriction o f  6 to ~ coincides with the restriction of  31 + 32. 

Proof  One h a s ( d + 3 ) ( A + ~ ) +  ½ [ A + c ~ , A + o t ]  = F + l p + ~ p w h i c h i m p l i e s  ( d +  
3)(F + ~p + q)) + [A + c¢, F + 7 / +  ~0] = 0. By taking the homogeneous components and 

3 In the first version of this paper I claimed that ~ = ~ in general. The referee very rightly pointed out 
that this was a mistake and gave me the counterexample of an abelian Lie algebra .q; I thank him very much. 
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by using the definitions, one obtains 

dF +[A ,F]  = 0  
d~r + [A, ~r] - B  

d~o + [A, ~o] fl and 
dB + [A, B] - [F ,  ~r] 

dE + [A, El [F, ~o1 

Thus the lemma would be obvious without the terms [A, -] and the terms [or, .]. However 
if Z(F,  ~, ~o, B, E) ~ ~, it follows from the invariance of 2- that one can enter d in 2- by 
replacing it everywhere by d + [A, .] and that one can enter 6 in 2- by replacing it everywhere 
by 6 + [or, .]. This implies the result. [] 

8F +[ot, F] = B 
6q, + [~, q~] = - E  

6~o + [a, ~o] = 0 

6B + [a,B] = [~o,F] 
6E + [~,E] = -[~o,~p]. 

L e m m a  1.4. Let dtl and 611 be the unique antiderivations o f~  satisfying 

dl B = - ~ ,  d~ fl = qg, dl (other generators) = 0 

and 

611B = F ,  8'l E = - 7 t ,  

Then one has on fO dd I + d~d 
(F, ~t, B, fl). 

6~ (other generators) = O. 

= degree in (~r,~o,B, fl) and 8611 + 6rl 6 = degree in 

Proof One has on 9~ 

dl d'  l + d'  1 dl = degree in(~,  ~o, B, fl), d2dll + d1! d2 = O, 

61611 -]-61161 = degree in( F, ~,  B, fl), 626' 1 +61162 = 0 .  

Since both sides of these equations are derivations of ~, it is sufficient to verify that 
they are true on the generators which is straightforward. The lemma follows then from 
Lemma 1.3. [] 

We are now ready to describe the d and 6 cohomologies of ~. Let 2-s(.q) be the space 
of invariant polynomials on ~ and let 2-~ (g) be the subspace of homogeneous invariant 
polynomials of degree n on g; one has the following theorem. 

Theorem 1.5. The d and the 8 cohomologies of ~ are given by 

and 

{ Hk'l(23, d) = 0  if l # O  or i f  kisodd, 
n2n'O(~3, d) {P(F) IP cZ~(g)}~-Z~(g)  

{ Hk'l(~,6) = 0  i f k # O  o r i f l i s o d d ,  
H 0 ' 2 n ( ~ , 6 )  = {P(qg) I P 6 2~(,q)} ~ 2-~(.q). 

Proof By Lemma 1.4, d I (resp. 6' 1 ) gives a homotopy for d (resp. 6) for terms which contain 
(~t,~o, B, fl) (resp. (F, qt, B, fl)), so we are left with P(F)  (resp. e(qg)) with P c Z~(.q). 
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These cocycles are classically cohomologically independent (in fact they describe the basic 

cohomologies of  the Weil algebras Wa (.q) and W~ (.q)). 

R e m a r k  1.6. One has with obvious notations, for P ~ Z~ (.q) 

dP(~o . . . . .  (p) = nP(q9 . . . . .  qg, d~o + [A,(p]) 

= nP(~o . . . . .  (p,/3) ---- 3 ( -nP( (p  . . . . .  (p, ~) )  

and 

8 P ( F  . . . . .  F) ---- n P ( F  . . . . .  F , B )  = d ( - n P ( F  . . . . .  F, ¢ ) )  

which means that 

d ( H ( ~ ,  3)) = 0  

or equivalently, 

and 

and 6 ( H ( ~ , d ) )  = 0 

H ( H ( ~ , B ) , d )  = H ( ~ , 8 )  = {P(~o) I P ~ 2-s(.q)} --~ Zs(~) 

H ( H ( ~ , d ) , 6 )  = H0O, d) = {P(F)  I P ~ Zs(.q)} ~- Zs(.q). 

Finally, let us notice that one has: 

(d + a ) F  + [A + o ~ , F l  = B, 

(d + a)(F + ¢ + ~o) + [A +ct ,  F + ¢ + ~o] = 0 ,  

(d + 3)q9 + [A + or, ¢p] ----/3, 

(d + 3)B + [ a  + or, B] = - I F ,  ¢ ]  + [~o, El,  

(d + 3)/5 + [ a  + or,/31 = -[~p, ¢1 + [F, 91. 

Therefore one can apply the same method as in the proof of  Theorem 1.5, by changing 
(F,  ¢ ,  ~p, B,/3) into (F,  F + ¢ + ~0, 9, B,/3), to prove the following theorem. 

T h e o r e m  1.7. The d + 3 cohomology of  ~ is given by 

{ H m ( ~ , d + 3 ) = O  if m i s o d d  

H2n(93, d + 3) = { P ( F  + ¢ + ~o) [ P E Z~(,q)} --~ Z~ (.q). 

The d + 8 cohomology is of  course only graded by the total degree. Notice that A + c~ 
and F + 7z + ~0 generate a third Weil algebra Wd+~ (.q) with differential d + 5, 
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1.3. The 6 cohomology modulo d of  23(~q) 

The computation of  the d and the 6 cohomologies of  23 was a necessary step for the 

computation of  the 6 cohomology modulo d of  23 which, as will become clear later on, 

contains all relevant cohomological information on 23. 

Theorem 1.8. One has Hk'/(23,6 mod(d) )  = Hk'l(23, d m o d ( 6 ) )  = 0 if  k + l is odd 
and Hk ' l (23 ,6mod(d) )  ~-- H~'l(23, d m o d ( 6 ) )  "~ Z~(~) i f k  + l = 2n. More precisely, 

on 23, a complete system of  cohomologically independent 6 cocycles modulo d in bidegree 
(m, 2n - m) which is also a complete system of  cohomologically independent d cocycles 

modulo 6 is given by 

{ term ofbidegree (m, 2n - m) in P ( F  + ~ + qg) I P ~ ~Z~(~)}. 

Proof Let Qk, l be an element of  Zk ' t (23 ,6mod(d))  and let us denote by [Qk, l] its 
class in Hk ' l (23 ,6mod(d)) .  By definition there is a Qk-l . l+l  C 23k-1,/+1 such that 

6Q k't + dQ  k- l ' t+l  -- 0. By applying d one gets 6dQ k't = - d 6 Q  k't -- 0 which im- 

plies, since H k+l' t(23, 6) = 0, that there is a Qk+l, t-1 ~ ~3k+l, t - l  such that 6Q k+l' t-1 + 

dQ k'l = 0. If [Qk, t] = 0, i.e. if Qk, t = 6Lk, l - I  + d L k - l , t  with L k ' t - l , L k - l ' t  
23, then one has 6(Q k+l ' t -1  - d L  k ' t - l )  = 0 and therefore, since Hk+l' t - l (23,6)  = O, 
there is a L k+l ' / -2  c 23 such that Qk+l , l - I  = 6Lk+l, t-2 + dLk, t-1. Thus [Qk, t] = 

0 implies [Qk+l, l -1]  = 0 and therefore there is a well-defined linear mapping 0' " 
H k'1(23, 6 rood (d)) ~ H k+l, t-1 (23, 6 mod (d)) defined by 0 ' [Q k'l] = [Qk+l, t - l ] .  

O' is injectivefor (k, l) ~ (2n, 0). Indeed, assume O'[Q k, t] = 0 or, equivalently Qk+l, l-1 
= 6L k+l' l-2 + d L  k ' t -I  with Lk+l ' l -2,  L k ' l -I  G 23; then dQ k't = d6L k ' t -I  

(=  _ 6 d L  ~, t-J ) which implies [ Qk, t] = 0 if (k, l) 5~ (2n, 0) since then H k, 1 (23, d) = 0. 

0' is surjective. Indeed let Qk+l, l -  1 be a 6 cocycle modulo d of  23, i.e. there is a Qk, t 

23 k'l such that 6Q k+| ' l - !  + dQ  k't = 0; then d6Q k't = 0 which implies that Qk.l is also 
a 6 cocycle modulo d of  23 since Hk't+l(23,d) = 0 and therefore one has [Qk+l . t - I ]  = 
01j[Qk, t]. 

We proved that 0 1 • H k' t (23, 6 mod (d)) ~ H k+l' t -  1 (23, 6 mod (d)) is an isomorphism 

for  (k, l) ¢ (2n, 0), which implies that 

0 / 
2"~(~) = H0'2n(23,6) _~ Hl '2n - l (23 ,6mod(d ) )  

0' 0' 0' .,~ . . . ~ H2n-1, 1(23,6 mod (d)) ~. H2n, O(23, d), 

where, for the last isomorphism, we use H 2n' 0(23, 6 mod (d)) "~ Hzn'°(23, d) which is 

implied by Remark 1.6. 

One can use a similar argument for H(23, d mod (6)). 
Finally, if P c 2-~(~), then (d + 6 ) P ( F  + ~p + tp) = 0 follows from (d + 6)(F + 
+ qg) = [F  + ~p + tp, A + ot] and therefore if one def ines  Qk, l = term of bidegree (k, l) 

in the expansion of  P ( F  + ap + ~o) for k + 1 = 2n, one has 6Q k'l + dQ  k- l ' l+l  -- 0, i.e. 
[Qk, l] = O,[Qk-l,l+l]. [] 
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2. Characteristic homomorphismmgeneralization of the Weil homornorphism 

25 

2.1. General framework 

We adopt the general framework of  [1] (see also in [2]). Let M be a smooth finite 

dimensional manifold and P --+ M be a smooth principal bundle over M with structure 

group G such that Lie(G) = .q. The gauge group (vertical automorphisms) C of P acts on 

the affine space C of  connections on P. Let 79(C C) be a C-invariant smooth manifold of  

connections on P. On the data (79, C) we assume the following regularity condition: The 

quotient AA -- 79/C, i.e. the set of  orbits, is a smooth manifold in such a way that 79 --~ j ~  

is a smooth principal G-bundle. 

For instance one can take 7 9 to be the space of  irreducible connections on P and C to 

be the group of  all vertical automorphisms of P,  or one can take 79 to be the space of all 

connections on P and C to be the group of  pointed gauge transformations, i.e. the group 

of  vertical automorphisms leaving invariant one point, and therefore one fibre, of P (all 

this with appropriate smooth structure). Another classical example is, for M ---- a compact  

connected oriented 4-dimensional riemannian manifold and G compact  (e.g. G --  SU (2)), 

to take 79 to be the space of  irreducible self-dual connections; in this case M is a finite di- 

mensional manifold. In any case .A4 plays the role of a moduli space of  connections on P.  

The algebra S2(P x 79) of  differential forms on P x 79 is a bigraded differential algebra 

with differential d+8, where d is the exterior differential of  P and 3 is the exterior differential 

of  79; d is of  bidegree (1, 0) and 6 is of  bidegree (0, 1). Tangent vectors to P x 79 split in 

two parts, X = X l '° + X °' 1, where X 1,° is tangent to P and X °, t is tangent to 79. 

There is a canonical Lie(G)-valued one form A__ on P x 79 of bidegree (1,0), i.e. A E 

~.~ ® ~21'°(P x 79), defined by ¥ ( ~ , a )  6 P x 79, A ( ~ , a )  is the connection form at ~ e P 

of the connection a c 79, (a is a connection on P).  

The algebra I2 (M x .h4) of differential forms on M x M is canonically a bigraded 

differential subalgebra of  I 2 ( P  x 7 9) which we shall identify as the base of  two operations 

on I 2 ( P  x 79). 

The structure group G of  P acts unambiguously on P x 79 via the fight action on P. 

There is a corresponding operation, in the sense of  Cartan, of  ,q = Lie(G) in £2 (P  x 79): For 

X 6 ,q, ix denotes the inner antiderivation of $2(P x 79) by the vertical vector field of type 

(1,0) corresponding to X (infinitesimal action of  G). One has i x A  = X and ix8 + 3ix = 0 

so the corresponding Lie derivation L x  is given by L x  = i xd  + d ix  and L x A  = [A_A_, X]. 

There are several possible actions of  C on P x 79. One is the simultaneous action on P 

and on 79, another one is the action on 79 only. For the sequel (i.e. the characterization of 

S2(M × M )  in ~ ( P  x 79)), one can use the operation corresponding to any of  these two 

actions. The simultaneous action might seem more natural since, after all, C is defined by 

its action on P (vertical automorphisms).  Nevertheless we choose the second one because 

the corresponding operation seems to us easier to describe; in this case, the infinitesimal 

action of  C corresponds to vertical vector fields of type (0,1). The Lie algebra Lie(C) 

identifies with Lie(G)-valued equivariant functions on P,  .~:" • P --+ ~ = Lie(G). For ?f E 

Lie(C), i~, denotes the inner antiderivation of  ~ ( P  x 79) by the vertical vector field of type 
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(0, 1) corresponding to 3L One has ixd + dix = 0 so the corresponding Lie derivative Ex 

is given by E~ = i ~  + 3ix. Furthermore one has ix(A) = 0 and ~x(_A) = d3~ + [A, 3~] 

with obvious notations (reminding that ,~ is a Lie(G)-valued function). The last equality 

reflecting the infinitesimal action of  the group of  gauge transformations on the space of 

connections which can be summarized by A ~ g - l d g  + g-~Ag with our notations; this 

is a right action on 79. 

S2(M × A/t) is the set of  basic elements of  ~2(P x 79) for these operations, i.e. 

N{ker(ix) 7~ ker(Lx,)  A ker((~) A ke r (~ )} ,  X, X' E Lie(G), ~, 3~' ~ Lie(F). 

2.2. Characteristic homomorphism 

It is well known that there exist connections on principal F-bundles 79 ~ .M for 

G compact (for instance there are such connections associated to choices of  riemannian 

structures on M). In any case let ..4 be a connection on P .  The corresponding connection 

form is a Lie(G)-valued one-form on 79. Remembering that Lie(F) consists of  Lie(G)- 

valued functions on P,  it follows, by evaluation on P,  that this connection form defines a 

Lie(G)-valued one-form a_q_ on P x 7 9 of  bidegree (0, 1), i.e. if_ ~ ~ ® £2 0, l ( p  x 79). One 

has ix(a_) = 3¢ and ~2:~ (or) = [a_, 3¢] for 3¢ ~ Lie(F) and ix(a_) = 0 and Lx(ot) ---- [or, X] for 

X E Lie(G). 

By Lemma 1.2, there is a unique homomorphism of bigraded differential algebras 

h : 91 --+ a"2(P x 79) such that h(A) = A and h(a)  = a_q_. This homomorphism satis- 

fies ix o h = h o ix,  YX ~ 8. The following lemma is the justification of the same base of  

for the subalgebra ~3. 

L e m m a  2.1. One has h(9~) fq a'-2(M x All) = h(2~). 

Proof One has ix (h(A))  = ix(A)  = X for X c Lie(G)and i~h(a) = ix(a__) = Y, 

ixh(~) = i~(3A) = ~.~(_O_) = dY +,[A,  Y], for Y ~ Lie(G). Therefore, by horizontality, 

h(gA) N ~ ( M  x AA) cannot contain expressions depending on h(A), h(ot) and h(~); thus 

elements of  h(gA) N ~2(M x M )  are of  the form h(Z(F,  q ,  ~0, B,/3)). On the other hand, 

if Z = h(F),hOp),h(~o),h(B) or h(fi) one has L x Z  = [Z,X] for X c Lie(G) and 

2.~Z = [Z, Y] for Y E Lie(F), therefore invariance of h(Z(F,  ~O, ~o, B, fi)) is equivalent to 

total ad(.q)-invariance of/- ,  i.e. h(9~) N O ( M  x .M) ___ h(~3). In order to achieve the proof 

of  the lemma, (i.e. to show the equality) it remains to show that i~h (~) = 0. One has (with 
F = h(F),  etc.): 

ix(F)  = ix(dA + I [ A , A ] )  = -di~(_A) + [i~(A),A] = 0, 

i,~0P) = ix(SA + d~_ + [A,~])  = ~2.~A - di,~ (_q_) + [i~(~_,A)] 

= d.-~ + [A, 3~] - d3¢ + [3¢, A] = 0, 

i.~(~o) = iz(a~_ + ½[~_, ~_]) = ~&~_ + [i~(~_), ~_] 

= [~, ~]  + [~,  ~_] = o, 



M. Dubois- Violette/Journal of Geometry and Physics 19 (1 996) 18-30 

i.~(B) = i,~(SF + [or, F]) = ~ F  + [i~(~),F] 

= IF ,  L~I + [~ ,  F ]  = 0, 

i.~.(/~) = i.~(d~0 + [A, ¢p]) = -di.~(~o) - [A, i~(¢p)] = 0, 

which implies in particular i.~h (~) = 0. 
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[] 

It follows from this lemma that h induces homomorphisms of the various cohomologies 
of ~ in the corresponding cohomologies of I2(M x .M), in particular, h induces an homo- 
morphism h e of H(~ ,  6 mod (d)) in the 6 cohomology modulo d of £2 (M x .A//). Of course 
h depends on .,4, however one has the following theorem. 

Theorem 2.2. The homomorphism h c is independent of  .A. 

Proof Let .At, t E [0, 1], be a smooth family of connections on 79 --+ 3.4 and let ht 
be the corresponding family of homomorphisms of bigraded differential algebras of ~1 in 
I2(P x 72). One has for P 6 Z~(.q) 

d 
- ~ h t ( P ( F  + ~ + ~o . . . . .  F + gr + q))) 

( ( d h  ) )  = ( d + 6 )  n P  -~ t ( o t ) , h t ( F + ~ r + ~ o )  . . . . .  h t ( F + ~ r + q ) )  . 

On the other hand nP(dht(ot) /dt ,  h t (F  -F ~r -t- ~o) . . . . .  h t (F  + gr + ~0)) is basic for the 
operations of Lie(G) ---- ,q and of Lie(F) and therefore it is an element of I2(M x M )  so, 
by integration one has 

hi ( P ( F + 7t + ~o) ) - ho( P ( F + ~ + qg) ) c (d + 3)S2(M x M )  

which means, in view of Theorem 1.8 that h E - h~ = 0. [] 

The homomorphism h c will be called the characteristic homomorphism. 

Remark 2.3. 
(a) The same proof shows that the homomorphism /Ttc of H ( ~ , d m o d ( 8 ) )  in the d 

cohomology modulo 8 of f2(M x .M) is independent of the choice of A. This also 
shows that the homomorphism h~+~ of the d -t- 3 cohomology of ~ in the total de Rham 

cohomology of M x .A4 does not depend on ..4. Of course h c, [~c and h~+~ are essentially 
the same thing in view of Theorems 1.7 and 1.8. 

(b) Similarly, h~ : H ( ~ , 8 )  --~ H ( I 2 ( M  x M) ,~)  is independent of A because 

d h t (  P(q)) ) = 3 ( n P  ( ~ht(ot) ,ht(qg) . . . . .  ht(go) ) ) 

and 

n P  ht(ot),ht(~o) . . . . .  ht(cp) E £2(M x .Ad). 
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(C) Finally, hCd • H(fO, d) --+ H ( ~ 2 ( M  x A4 ) ,d )  is independent of  .,4 since h ( P ( F ) )  is 

already independent of .,4. In fact h,~ is the Weil homomorphism for P --+ M, 

hCd • H ( ~ , d )  ~ Zs(~) -~  H ( M )  = H ( F 2 ( M ) , d )  C H(F2(M × .A4),d), 

where ch is the usual Chem character of  P ---> M. 
(d) The Weil homomorphism ch ~- hod is already included in h c since h C I H * ' ° ( ~ ,  

6 rnod (d)) -~ h~. In the same way, 

h c I H ° ' * ( ~ ,  8 mod (d)) "~ h~, 

so the characteristic homomorphims h c contains all the relevant information and gen- 

eralizes the Weil homomorphism in an obvious sense. 

2.3. Cartan operations in 92(~) and h(9~(g)) 

Let us denote by Z the image by h of  the generator Z = A, F,  a ,  ~o, lp, ~, B,/~ of  

i.e. Z = h(Z) .  Then the Cartan operations of  .q = Lie(G) and of  Lie(G) satisfy the 

following relations: (X ~ .q,Y c Lie(G)) i x ( A )  = X and ix(Z_) = 0 for the other 

Z,  (SX = d X  = O), ix3  + Six = 0 s o  L x  = i x d  + d i x  and L x ( Z )  = [Z ,X]  for 
Z = A , F ,  ot . . . . .  /3; i~(a) = Y, i~(~) = dY + [A,Y] and i~(Z_) = 0 for the other Z, 

i.~d + d(~ = 0, (&~ = 0), so ,2.~ = (~.J~ + ~i.~ and then ~ ( A )  = dY + [A,Y] and 

~2~(_Z) = [Z, Yl for Z = F , u  . . . . .  ft. 
One thus sees that the operation of  .q = Lie(G) corresponds under h to the operation 

X ~-~ ix  of g in ?t defined in Section 1. In contrast, there is a problem to define an analogue 

in ?1 of  the operation of  Lie(G).The reason is that dY does not mean anything in ?l. So, in 

order to define the analogue of  this operation in ?1 one has to add generators, for instance 

one may combine ?l(g) with the Weil-BRS algebra A(.q) [7] but the result is complicated 

and the interest of  the universal model (9.1, ~)  is its simplicity. That is why we refrain to 

follow this way and defined directly the base ~3 of  ~ in Section I. 

" does not correspond However, in contrast to the operation X w-~ ix ,  the operation X w-~ t x 

to an operation in £2 (P  x 79) under the homomorphism h. Thus the property of  ~ to be basic 

for F (and not only for i) looks accidental in the context used here but it is an indication 

that there may be another context in which (9/, ~ ' )  plays the role of  a universal model. 

2.4. Connection with Donaldson invariants 

Let M be an oriented conformal 4-dimensional compact manifold, P ~ M be as above 

with G compact and take for 7 9 the space of  self-dual connections on P, i.e..A4 is the moduli 
space of  instantons and is finite dimensional. Let ~o ki' ti be elements of  bidegrees (ki, li) in 
the image of  h c such that ~ i  li = dim(A//) and let Cki be elements of  Hk~ (M). Then 
(o)ki, li, Cki) are in H li CA/I) and ~.-Ji ( O)ki" li' Cki) is in n dim('M) (.A//). Therefore by coupling 

Ui ( O)ki" li, C k  i ) with the fundamental class of  .M, i.e. by integrating over A//one produces 

numbers which are the Donaldson invariants; these invariants are polynomials on H . ( M )  
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(in fact on He (M) if M is simply connected). The non-triviality of these invariants implies 

that generically the image of the characteristic homomorphism h c is non-trivial. 

3. Conclusions 

By construction, the homomorphism h maps ~ onto the algebra of differential forms 
on P x 79 generated by A (the gauge potentials), by a__ (the ghosts) and by their 3 and 

d differentials (i.e. their BRS and exterior differentials). Lemma 2.1 shows that among 
these differential forms, the one living on M x .A4 are exactly the one which are in the 

image of the basis ~ and Theorem 1.8 states that the 3-cohomology modulo d of ~ is 

exactly given by the bigraded expansions of the Chern-Weil polynomials. This justifies the 
claim in the introduction that the (local) relevant basic BRS-cohomology of the bigraded 

differential algebra generated by the gauge potentials, the ghosts and their BRS and exterior 
differentials is exhausted by the classes corresponding to the bigraded expansions of the 
Chern-Weil cocycles. Of course, from the point of view of quantum field theory, one would 

like to add arbitrary derivatives of the fields and not only the one entering through their 

differentials in the above sense. In this respect our result is a priori incomplete for field 
theory, however one may expect that, as for the case of ordinary gauge theory [8], inclusion 

of such terms does not modify fundamentally the result. As pointed out to us by R. Stora, 
it is unclear whether, in this context, the locality has to be assumed so also in this respect 
our result is incomplete from the point of view of topological field theory. In any case we 

have described here a very general frame to produce invariants which is a direct extension 
of the Weil algebra approach to characteristic classes and makes contact with topological 

field theory. 
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